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We investigate the behavior of the Gibbs-Shannon entropy of the stationary nonequi-
librium measure describing a one-dimensional lattice gas, of L sites, with symmetric
exclusion dynamics and in contact with particle reservoirs at different densities. In the
hydrodynamic scaling limit, L → ∞, the leading order (O(L)) behavior of this entropy
has been shown by Bahadoran to be that of a product measure corresponding to strict
local equilibrium; we compute the first correction, which is O(1). The computation
uses a formal expansion of the entropy in terms of truncated correlation functions; for
this system the kth such correlation is shown to be O(L−k+1). This entropy correction
depends only on the scaled truncated pair correlation, which describes the covariance
of the density field. It coincides, in the large L limit, with the corresponding correction
obtained from a Gaussian measure with the same covariance.
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1. INTRODUCTION

The properties of nonequilibrium stationary states (NESS) of open systems, i.e.,
ones in contact with infinite reservoirs at different chemical potentials and/or
temperatures, is a subject of great interest.(1−15) The simplest nontrivial example
of such a system is the one-dimensional simple symmetric exclusion processes
(SSEP) on the finite lattice �L = {1, 2, . . . , L}, with particle reservoirs coupled
to sites 1 and L; we take these reservoirs to have densities ρa and ρb, respectively,
with ρa > ρb. The 2L possible configurations of the system are described by the
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L-tuple τ L = (τ1, ..., τL ), with τi = 1 if site i is occupied and τi = 0 if the site is
empty. The stationary measure µ̄L (τ L ) of the system is explicitly known in terms
of products of noncommuting matrices. (4,10) Using this representation it is possible
to obtain considerable information about the truncated correlation functions at k
distinct sites, 〈τi1 · · · τik 〉T

µ̄L
. In particular these are O(L−k+1), in the sense that

lim
L→∞

Lk−1〈τ�x1 L� · · · τ�xk L�〉T
µ̄L

= Fk(x1, . . . , xk), (1.1)

for certain continuous functions F1(x1), F2(x1, x2), etc; here �ξ� is the greatest in-
teger not exceeding ξ . These correlations are thus very long range and contribute,
despite their vanishing pointwise as L → ∞, to the fluctuations (and larger devia-
tions) about the typical density profile ρ̄(x) = F1(x) = limL→∞〈τ�x L�〉 in the hy-
drodynamic scaling limit, L → ∞, i/L → x ∈ [0, 1], where i = 1, . . . , L labels
the lattice sites. (10)

In this hydrodynamic limit the typical density profile ρ̄(x) is the stationary
solution of the macroscopic hydrodynamic equation with boundary conditions
ρ̄(0) = ρa , ρ̄(1) = ρb. For the SSEP this is the simple diffusion equation and so

ρ̄(x) = ρa(1 − x) + ρbx . (1.2)

The fluctuations about the typical profile ρ̄(x) are given by a Gaussian field whose
covariance is determined by the truncated pair correlation function.(3,10) The result
agrees with that obtained from fluctuating hydrodynamics.(16)

In this paper we study the relation between the functions Fk and the L → ∞
limit of the Gibbs-Shannon entropy of the stationary measure µ̄L , defined for any
measure µL by

S(µL ) = −
∑

τ L

µL (τ L ) log µL (τ L ). (1.3)

In this limit S(µ̄L ) is O(L) and only F1 is relevant to leading order (this is a result
of Bahadoran) (17) and our goal here is to show that only F1 and F2 are relevant for
the first correction, which is O(1).

Our motivation for studying S(µ̄L ) is its potential connection with deviations
from the typical profile ρ̄(x). (18) The expectation of such a connection comes
from our experience with equilibrium systems, for which the probability of such
deviations is determined by the induced change in the entropy.

In fact, the open SSEP with NESS measure µ̄L is, in the hydrodynamic
scaling limit, very closely related to such a (local) equilibrium system. To make
this more precise, let us define the product measure with expected density ni at
site i by

ν
(n)
L (τ L ) =

L∏

i=1

[niτi + (1 − ni )(1 − τi )], (1.4)
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and for any macroscopic density profile ρ(x) write (with some abuse of notation)
ν

(ρ)
L = ν

(n)
L with ni = ρ(i/(L + 1)) (the specific definition of ni arises from the

convention that the system has total length L + 1, with the boundary reservoirs
located on sites i = 0 and i = L + 1). Then the restriction of the NESS measure
µ̄L to the variables τi for i lying in an interval

[�x L�, �x L� + m], where m
is independent of L , is indistinguishable, for L → ∞, from the corresponding
restriction of the local equilibrium product measure ν

(ρ̄)
L (see (1.2)).

For this product measure ν
(ρ̄)
L the probability of observing a density profile

ρ(x) is given, for large L , by

Prob
({ρ(x)}|ν(ρ̄)

L

) ∼ e−LFeq({ρ(x)}), (1.5)

where the free energy or large deviation functional (LDF) Feq can be written as

−Feq({ρ(x)}) =
∫ 1

0

{
[s(ρ(x)) + λ(ρ̄(x))ρ(x)]

− [s(ρ̄(x)) + λ(ρ̄(x))ρ̄(x)]
}

dx . (1.6)

Here s(r ) = −(r log r + (1 − r ) log(1 − r )) is the entropy per unit length (or site)
of the product measure with constant density r , and

λ(r ) = −∂s

∂r
(r ) = log

(
r

1 − r

)
(1.7)

is the chemical potential which yields this density. The connection between the
LDF Feq and entropy given in (1.6) extends to more general (non product) local
equilibrium measures.(19,20)

Given this connection between entropy and large deviations in equilibrium
systems, it is natural to ask whether there exists a similar relation between
S(µ̄L ) and the large deviation functional in the NESS of the SSEP, for which
Prob({ρ(x)}|µ̄L ) is qualitatively different from (1.5). (6,7,9,10) Using results of Kosy-
gina, (21) Bahadoran showed, for a large class of systems including the open SSEP,
that

lim
L→∞

1

L
S(µ̄L ) = lim

L→∞
1

L
S
(
ν

(ρ̄)
L

)
. (1.8)

In other words, the Gibbs-Shannon entropy is, to leading order, exactly the same
as that of the product measure with density ρ̄(x), i.e., ν

(ρ̄)
L . It thus does not reflect

at all the very different nature of the large deviation functional for the NESS in
comparison with that of equilibrium systems.

Information about the probabilities of untypical configurations in the NESS
of the SSEP is encoded in the truncated correlation functions, or equivalently in
the Fk’s of (1.1). These also contribute to the entropy S(µ̄L ) beyond the leading
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order. This is what we investigate in the present note. We find that the difference

RL ≡ S(µ̄L ) − S
(
ν

(ρ̄)
L

)
(1.9)

approaches a constant value R as L → ∞; Bahadoran’s theorem only says that
it grows slower than L . Furthermore R depends only on the pair correlation
function F2, indicating that only configurations which contribute to the Gaussian
fluctuations about ρ̄(x) contribute to the entropy at this order. This permits us to
obtain an explicit expression for R as the L → ∞ limit of R̂L , the corresponding
difference in entropies for a Gaussian measure on variables ξi ∈ R, i = 1, . . . , L ,
having the same covariance matrix as µ̄L . We present analytic arguments in favor
of this expression, and also check it numerically via exact computations on systems
of different sizes. It appears in fact that our results extend to more general systems
having long range truncated correlation functions of the form (1.1), as we discuss
in Sec. 2.1.

The outline of the rest of this paper is as follows. In Sec. 2 we describe the
SSEP and the corresponding Gaussian model, and in Sec. 2.1 the possible extension
to other models, in particular, the weakly asymmetric exclusion process (WASEP).
In Sec. 3 we report on numerical computations of the entropy difference RL − R̂L

for different system sizes and densities, in both the SSEP and the WASEP. In Sec. 4
we compute rigorously the L → ∞ limit of R̂L for the Gaussian model. In Sec. 5
we establish a relation between an arbitrary measure µ(τ�), where τ� = (τi )i∈�

with � any finite set of points, and the truncated correlations 〈∏i∈�′ τi 〉T
µ�

for
�′ ⊂ �; we develop from this an expression for the entropy in terms of the
truncated correlations. We use this in Sec. 6 to argue that the difference limL→∞ RL

exists and has value R = limL→∞ R̂L .

2. THE MODELS AND THE RESULTS

We begin with a full description of the SSEP. In this model each particle inde-
pendently attempts to jump to its right neighboring site, and to its left neighboring
site, in each case at rate 1 (so that there is no preferred direction). It succeeds if
the target site is empty; otherwise nothing happens. A particle is added to site 1,
when the site is empty, at rate α, and removed, when the site is occupied, at rate
γ ; similarly particles are added to site L at rate δ and removed at rate β. This
corresponds(10) to the system being in contact with infinite left and right reservoirs
having respective densities

ρa = α

γ + α
, ρb = δ

β + δ
. (2.1)
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We also introduce the parameters

a = 1

γ + α
, b = 1

β + δ
. (2.2)

We give in Appendix A a proof of the scaling form (1.1) for this model. The
first three truncated correlations are, for i < j < l,

〈τi 〉µ̄L = ρa(L + b − i) + ρb(i + a − 1)

L + a + b − 1
, (2.3)

〈τiτ j 〉T
µ̄L

= − (ρa − ρb)2(i + a − 1)(L + b − j)

(L + a + b − 1)2(L + a + b − 2)
, (2.4)

〈τiτ jτl〉T
µ̄L

= −2
(ρa − ρb)3(i + a − 1)(L + 1 + b − a − 2 j)(L + b − l)

(L + a + b − 3)(L + a + b − 2)(L + a + b − 1)3
. (2.5)

Thus (1.1) holds for k = 1, 2, 3, where for x < y < z,

F1(x) = ρa(1 − x) + ρbx, (2.6)

F2(x, y) = −(ρa − ρb)2x(1 − y), (2.7)

F3(x, y, z) = −2(ρa − ρb)3x(1 − 2y)(1 − z). (2.8)

We remark that if a = b = 1 then 〈τi 〉µ̄L = ρ̄(i/(L + 1)) and the entropy

difference RL of (1.9) must be negative, since ν
(ρ̄)
L maximizes the entropy S(µ)

among all measures µ satisfying 〈τi 〉µ = ρ̄(i/(L + 1)). Because our expression
(4.16) for limL→∞ RL is independent of a and b, this limit must be negative or
zero.

In the remainder of the paper we argue that, in the SSEP, the next order
correction to the result of Bahadoran will be equal to the correction for a Gaussian
system with the same covariance. Specifically, let ν̂L and µ̂L be Gaussian measures
on L variables with mean zero and respective covariance matrices JL and KL given
by

(JL )i i = 〈τi 〉µ̄L (1 − 〈τi 〉µ̄L ), (JL )i j = 0, i = j ; (2.9)

(KL )i i = 〈τi 〉µ̄L (1 − 〈τi 〉µ̄L ), (KL )i j = 〈τiτ j 〉T
µ̄L

, i = j. (2.10)

We note from (2.3) that 〈τi 〉µ̄L and 1 − 〈τi 〉µ̄L do not vanish. The entropies of these
Gaussian measures are given by

S(ν̂L ) = L

2
(1 + log 2π ) + 1

2
log det JL , (2.11)

S(µ̂L ) = L

2
(1 + log 2π ) + 1

2
log det KL , (2.12)
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so that

R̂L ≡ S(µ̂L ) − S(ν̂L ) = 1

2
log

det KL

det JL
. (2.13)

The L → ∞ limit of (2.13),

R = lim
L→∞

R̂L = lim
L→∞

1

2
log

det KL

det JL
, (2.14)

exists; see Sec. 4. Further, we claim that this limit gives also the lowest order
correction to the result (1.8) of Bahadoran (see (1.9)):

lim
L→∞

RL = lim
L→∞

[
S(µ̄L ) − S(ν(ρ̄)

L )
] = R. (2.15)

2.1. Other Models

It is natural to ask to what extent these results hold for other lattice gas
models. As will become clear in Sec. 6, the key element in our analysis for the
SSEP is the scaling behavior (1.1) of the truncated correlation functions. (We also
use some technical facts about the way the limit in (1.1) is achieved and the size of
the limiting functions Fk .) We expect (2.15) to hold for models having this same
scaling behavior and satisfying an additional condition discussed in Remark 4.1.

Unfortunately, less is known about the correlation functions for other lattice
gas models than for the SSEP; in particular, we know of no other model of an
open NESS for which (1.1) has been established with nonzero Fk , k ≥ 2 (for
zero range processes the NESS is a product measure, i.e., Fk = 0 for k ≥ 2).
We expect, however, that this scaling will hold in the weakly asymmetric sim-
ple exclusion process (WASEP); see Ref. 22, where expressions corresponding
to (2.6) and (2.7) are given for this model. In the WASEP the boundary dynam-
ics are those of the SSEP, but the bulk dynamics are modified so that a particle
attempts to hop to its right at rate 1 and to its left at rate exp(−λ/L); λ is a pa-
rameter which interpolates between the symmetric process (λ = 0) and the totally
asymmetric process (λ = ±∞). The typical profile ρ̄(x) is the solution of the vis-
cous Burgers equation. We include numerical results for the WASEP in the next
section.

The truncated correlation functions are also expected to satisfy (1.1) in the
KMP model. (1) This is an open system in which the variable ξi ∈ R+ at site i ,
i = 1, . . . , L , represents an energy at that site, and ρa and ρb are replaced by
temperatures Ta and Tb. For this system, (1)

FKMP
1 (x) = lim

L→∞
〈
ξ�x L�

〉 = Ta(1 − x) + Tbx, (2.16)
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Fig. 1. Differences of corrections to entropies in the SSEP and Gaussian models for ρa = 1 and several
choices of ρb . The data are consistent with the vanishing of RL − R̂L as L → ∞.

while for x < y, (23)

FKMP
2 (x, y) = lim

L→∞
L
〈
ξ�x L�ξ�yL�)

〉 = (Ta − Tb)2x(1 − y). (2.17)

One can also imagine that for more general diffusive systems, such as those
described by the macroscopic fluctuation theory, (7,9) the long range part of the
truncated correlation functions scales as in (1.1).

3. NUMERICAL RESULTS

We have investigated (2.15) numerically for the SSEP, at several different
values of the boundary densities ρa, ρb, and for the WASEP, at ρa = 1, ρb = 0,
for several different values of λ. For all computations we have taken a = b = 1
(see (2.2)). We were able to consider systems up to size L = 25. In each case
we computed the measure µ̄L explicitly and from this S(µ̄L ), S(ν(ρ)

L ), S(µ̂L ), and
S(ν̂L ), and thus, from (1.9) and (2.13), RL and R̂L . For the SSEP we could also
compute the limiting value R, defined in (2.14), to a high degree of accuracy, using
(2.4).

Figures 1 and 2 present our results for the SSEP. In order to show results for
several parameter values on the same figure, we plot the normalized difference

RL − R̂L

R
(3.1)
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Fig. 2. Same as Figure 1 for other choices of ρa and ρb .

as a function of 1/L . The table within each figure gives the values of ρa and ρb

for each curve, as well as the corresponding value of R. Confirmation of (2.15)
corresponds in each case to lim1/L→0(RL − R̂L )/R = 0. This certainly appears to
hold, but the maximum system size we have been able to achieve is perhaps too
small for the evidence to be completely convincing.

Figure 3 gives similar plots for the WASEP, at different values of λ, with ρa =
1, ρb = 0. Here we have no closed form for the two-point correlation function, so
that an accurate computation of R is more difficult than for the SSEP; we therefore
plot the unnormalized difference RL − R̂L against 1/L . The behavior for small L
is quite irregular, particularly for negative values of λ, but the large-L behavior
again provides some confirmation that lim1/L→0(RL − R̂L ) = 0, i.e., that (2.15)
holds for this model.

4. THE GAUSSIAN LIMIT

In this section we evaluate the limit R of (2.14). Let us write

det KL

det JL
= det

[
J−1/2

L KL J−1/2
L

]
= det(I + UL ), (4.1)
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where

UL = J−1/2
L [KL − JL ]J−1/2

L , (4.2)

so that (UL )i i = 0, i = 1, . . . , L , and

(UL )i j = 〈τiτ j 〉T

√〈τi 〉(1 − 〈τi 〉)〈τ j 〉(1 − 〈τ j 〉)
, 1 ≤ i = j ≤ L . (4.3)

In order to pass to a continuum limit it is convenient to relate U to the integral
operator HL on L2([0, 1]) with kernel

hL (x, y) = L(UL )i j , for
i − 1

L
< x ≤ i

L
,

j − 1

L
< y ≤ j

L
, (4.4)

that is, (HLφ)(x) = ∫ 1
0 hL (x, y)φ(y) dy for φ ∈ L2([0, 1]). Since HL has rank

(at most) L , all but L of the eigenvalues of I + HL are equal to 1, so that the
determinant det(I + HL ) is certainly well defined. Then

det(I + UL ) = det(I + HL ), (4.5)

since if we define

ψL ,i (x) =
{ √

L, if (i − 1)/L < x ≤ i/L ,
0, otherwise,

(4.6)
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then the ψL ,i for i = 1, . . . , L form an orthonormal set in L2([0, 1]) which spans
the range of HL and satisfies HLψL ,i = ∑

j (UL ) j iψL , j .
Now (1.1) implies that for x = y, limL→∞ hL (x, y) = h(x, y), where

h(x, y) = F2(x, y)√
F1(x)(1 − F1(x))F1(y)(1 − F1(y))

. (4.7)

Let H be the integral operator on L2([0, 1]) with kernel h. It can be shown
that H is of trace class (we define this precisely below), so that det(I + H ) is
well defined. (24) However, it is not true that limL→∞ det(I + HL ) = det(I + H );
essentially, this is because the diagonal elements of HL are zero rather than being
given by the obvious extension of (4.3), and as a consequence HL does not converge
to H in trace norm. To evaluate the limit correctly it is helpful to introduce the
regularized determinant; (24) one needs then only convergence of HL to H in a
weaker sense.

We now discuss the general theory of the regularized determinant in the
(relatively simple) context in which we will use it. Let A be a compact integral
operator on L2([0, 1]) with symmetric kernel a(x, y) = a(y, x), so that (Aφ)(x) =∫ 1

0 a(x, y)φ(y) dy; A is self-adjoint and hence diagonalizable: Aφn = λnφn for
some orthonormal basis φn . A is of trace class if ‖A‖1 ≡ ∑

n |λn| < ∞ and of
Hilbert-Schmidt class if ‖A‖2 ≡ ∑

n |λn|2 < ∞; we also have

‖A‖2 ≡
∫ 1

0

∫ 1

0
|a(x, y)|2 dx dy. (4.8)

If A is of trace class then both the trace Tr A = ∑
n λn and the Fredholm de-

terminant det(I + A) = ∏
(1 + λn) are well defined and satisfy log det(I + A) =

Tr log(I + A). If A is of Hilbert-Schmidt class then det(I + A) may not be de-
fined but Ã = e−A(I + A) − I is of trace class and the regularized determinant
det2(I + A) is defined by

det2(I + A) = det(I + Ã). (4.9)

We note several properties of det2 which we will need below: (i) if A is of trace
class then

det2(I + A) = det(I + A)e− Tr A; (4.10)

(ii) if A is Hilbert-Schmidt and k ≥ 2 then Ak is of trace class, with

Tr Ak =
∫ 1

0
dx1 · · ·

∫ 1

0
dxk h(x1, x2) · · · h(xk−1, xk)h(xk, x1), (4.11)

and Tr Ak is continuous in the Hilbert-Schmidt norm, i.e.,

lim
n→∞ Tr Ak

n = Tr Ak if lim
n→∞ ‖An − A‖2 = 0; (4.12)
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(iii) det2(I + A) is continuous in the Hilbert-Schmidt norm, i.e.,

lim
n→∞ det2(I + An) = det2(I + A) if lim

n→∞ ‖An − A‖2 = 0; (4.13)

and (iv) if the operator norm of A satisfies ‖A‖ < 1 then

log det2(I + A) =
∞∑

n=2

(−1)n+1

n
Tr An. (4.14)

In order to apply these ideas we note that it follows from (2.3), (2.4), (2.6),
and (2.7) that the kernel h(x, y) is square integrable and that

lim
L→∞

‖HL − H‖2 = lim
L→∞

∫ 1

0

∫ 1

0
|hL (x, y) − h(x, y)|2 dx dy = 0. (4.15)

Now from (4.10) and the fact that Tr HL = 0 it follows that det(I + HL ) =
det2(I + HL ), and hence from (4.1), (4.13), and (4.15), limL→∞ det(I + UL ) =
det2(I + H ). Thus from (2.14) and (4.1),

R = lim
L→∞

[S(µ̂L ) − S(ν̂L )] = 1

2
log det2(I + H ). (4.16)

Remark 4.1: (a) It follows from (2.6) and (2.7) that |h(x, y| ≤ 1, with strict equal-
ity possible only for x = y and ρa = 1 − ρb = 1; this implies that the operator
norm of H is less than one, so that from (4.14) we have the expansion

R =
∞∑

n=2

(−1)n+1

2n
Tr H n. (4.17)

The convergence of the expansion (4.17) is the additional condition for the validity
of (2.15) referred to in Sec. 2.1.

(b) The operators −HL may be shown to be positive semi-definite, and hence
−H is also; from

∫ 1
0 (−h(x, x)) dx < ∞ and the continuity of h(x, y) it then

follows that H is of trace class. (24) Thus in fact det2(I + H ) is given by (4.10).

5. TRUNCATED CORRELATIONS AND ENTROPY

In this section we derive an expression for the probability of a configuration,
and an expansion for the entropy, in terms of truncated correlation functions. The
results hold in a more general setting than the specific models we are considering
here. Thus let � be any finite set and µ� be a measure on the configurations
τ� on �: τ� = (τi )i∈�, τi = 0, 1. In particular, � might be a subset of a larger
set, say � ⊂ Z

d , and µ the restriction of some measure on the configurations
on this larger set to the configurations on �. For any set A = {i1, . . . , ik} ⊂ �

we will write µA for the marginal of µ� on configurations defined on A and νA
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for the product measure on the configurations on A which has the same one-site
probabilities as does µ�: for a configuration τ A = (τi1 , . . . , τik ) with τi = 0, 1,
and with ti = 〈τi 〉µ�

,

νA(τ A) =
∏

i∈A

tτi
i (1 − ti )

1−τi =
∏

i∈A

[τi ti + (1 − τi )(1 − ti )]. (5.1)

5.1. Probabilities and Truncated Correlations

For the subset A = {i1, . . . , ik} ⊂ � we denote the truncated correlation
function 〈τi1 · · · τik 〉T

µ�
on the sites of A by tA; if A = {i} we usually write ti rather

than t{i}, in accord with (5.1). Recall that tA is defined recursively by writing the
(untruncated) correlation function on the sites of A as a sum, over all partitions of
A into disjoint subsets, of the products of the truncated functions for the subsets:
letting P(A) denote the set of all partitions of A into disjoint subsets we have(25)

〈τi1 · · · τik 〉µ�
=

∑

π∈P(A)

∏

B∈π

tB, (5.2)

where π labels a particular partition.
For use in the next subsection it is convenient to rewrite the measure µ� by

factoring out the product measure ν�:

µ�(τ�) = ν�(τ�)(1 + x�(τ�)), (5.3)

where

x�(τ�) =
∑

π∈P̃(�)

∏

i∈Cπ

gi (τi )
∏

B∈π

tB . (5.4)

Here P̃(A), A ⊂ �, denotes the set of nonempty families π = {B1, . . . , Bk(π)} of
pairwise disjoint subsets of A in which each set Bi contains at least two points,
with Cπ = ∪i Bi for π ∈ P̃(A), and

gi (τi ) = t−τi
i [−(1 − ti )]

−(1−τi ) = (−1)1−τi
1

ν{i}(τi )
. (5.5)

To verify this formula one multiplies both sides of (5.3) by some product τi1 ...τik

and sums over τ�; the result is just (5.2).

Remark 5.1: An alternate way of viewing (5.3) is to introduce truncated measures
µ̂A defined by a recursion analogous to that for the truncated correlation functions:

µA(τ A) =
∑

π∈P(A)

∏

B∈π

µ̂B(τ B). (5.6)

Disentangling (5.6), on sees that µ̂A is a linear combination of measures on the
configurations on A, but for |A| > 1 with some negative coefficients; that is, µ̂A is
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a signed measure. There is a surprisingly simple relation between these truncated
measures and the truncated correlation functions: we claim that

µ̂{i}(τi ) = µ{i}(τi ), (5.7)

and if |B| ≥ 2,

µ̂B(τ B) = (−1)|B| ∏

i∈B

(−1)τi tB =
[ ∏

i∈B

(2τi − 1)

]
tB ; (5.8)

i.e., µ̂B(τ B) is equal to either tB or −tB , depending only on whether
∑

i∈B(1 − τi )
is even or odd. Equation (5.7) is an immediate consequence of the definition (5.6).
Equation (5.8) may be verified by substituting (5.7) and (5.8) into the right hand
side of (5.6), multiplying the result by some product

∏
i∈C τi , where C ⊂ A, and

summing over all τ A; the result is just (5.2). If we now substitute (5.7) and (5.8)
into (5.6) we obtain (5.3).

5.2. Expansion of the Entropy

In this subsection we obtain a series expansion for the entropy difference
S(µ�) − S(ν�). Other graphical expansions for the entropy have been obtained,
for example in. (26,27) From (5.3) and the definition (1.3) we have

S(µ�) = −
∑

τ�

ν�(τ�)(1 + x�(τ�)) log[ν�(τ�)(1 + x�(τ�))]

= −
∑

τ�

ν�(τ�)
[
log ν�(τ�) + x�(τ�) log ν�(τ�)

+ (1 + x�(τ�)) log(1 + x�(τ�))
]
. (5.9)

With the expansion

(1 + x) log(1 + x) = x +
∞∑

n=2

(−1)n

n(n − 1)
xn, (5.10)

and the identities
∑

τ�

ν�(τ�)x�(τ�) = 0,
∑

τ�

ν�(τ�)x�(τ�) log ν�(τ�) = 0, (5.11)

which follow from (5.3) and the equations 〈1〉µ�
= 〈1〉ν�

= 1 and 〈τi 〉µ�
=

〈τi 〉ν�
= ti , respectively, (5.9) yields

S(µ�) − S(ν�) =
∑

τ�

ν�(τ�)
∞∑

n=2

(−1)n+1

n(n − 1)
x�(τ�)n. (5.12)
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This expansion requires that |x�(τ�)| < 1 for all τ�; for the SSEP we have checked
this condition numerically for L = 1, . . . , 23 at several values of ρa , ρb.

We next insert the definition (5.4) of x� into (5.12) and expand x�(τ�)n:

S(µ�) − S(ν�) =
∑

τ�

ν�(τ�)
∞∑

n=2

(−1)n+1

n(n − 1)

∑

π1,...πn

n∏

j=1

[ ∏

i∈Cπ j

gi (τi )
∏

B∈π j

tB

]

(5.13)
This expression can be reorganized as an (infinite) linear combination of mono-
mials M in the variables tB . The coefficient of the monomial M is

∞∑

n=2

(−1)n+1

n(n − 1)
cn(M)

∑

τ�

ν�(τ�)
∏

i∈�

gi (τi )
mi (M), (5.14)

where cn(M) is the number of n-tuples (π1, . . . , πn) such that M is given by the
product

∏n
j=1

∏
B∈π j

tB , and mi (M) is the number of factors tB in the monomial
M such that i ∈ B.

We can carry out the sum over τ� in (5.14), using (with mi = mi (M))

hi (M) ≡
∑

τi =0,1

tτi
i (1 − ti )

1−τi gi (τi )
mi =

[
1

tmi −1
i

+ (−1)mi

(1 − ti )mi −1

]
. (5.15)

Since hi (M) = 1 if mi (M) = 0, (5.13) and (5.14) yield

S(µ�) − S(ν�) =
∑

M

d(M) M
∏

i∈DM

hi (M), (5.16)

where DM is the set of indices i such that mi (M) > 0 and

d(M) =
∞∑

n=2

(−1)n+1

n(n − 1)
cn(M). (5.17)

Since hi (M) = 0 if mi (M) = 1, we may restrict the sum in (5.16) to monomials
M for which mi (M) ≥ 2 for i ∈ DM .

We obtain a graphical representation for (5.16) by associating to each mono-
mial M a graph G M ; G M has a vertex for each factor tB in M , and vertices
corresponding to factors tB, tC are joined by an edge if and only if B ∩ C = ∅.
We will show in Appendix B that d(M) = 0 unless G M is connected; from this
observation together with the remarks above it follows that the sum in (5.16) can
be restricted to the set M of all monomials for which mi (M) ≥ 2 for all i ∈ DM

and for which G M is connected. We also show in Appendix B that if G M is a
cycle with k ≥ 3 vertices then d(M) = (−1)k+1. Note finally that if G M consists
of two vertices joined by an edge then the requirement that mi (M) ≥ 2 for i ∈ DM

implies that M = t2
B for some B, so that cn(M) = δn,2 and d(M) = −1/2 from

(5.17).
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6. ENTROPY FOR THE SSEP

We now apply the expansion (5.16) to the special case of the SSEP, taking
µ� to be the NESS measure µ̄L on �L and thus ν� to be the product measure ν

(ρ̄)
L ,

which we will here write as ν̄L . We will use (1.1) to identify the order, as L → ∞,
of the terms in the series; we then show that in this limit the leading order terms in
this series sum to R. We do not, however, give estimates which would completely
justify the neglect of the higher order terms.

Let us denote the order in L of a monomial M ∈ M by − jM , that is, we
suppose that M is O(L− jM ) as L → ∞. From (1.1) we know that tB is of order
L−(|B|−1), so that if M has k factors (not necessarily distinct), M = tB1 · · · tBk ,
then jM = ∑k

i=1(|Bi | − 1). Since |Bl | ≥ 2 for each l, k ≤ (1/2)
∑ |Bl |. But then,

because mi ≥ 2 for i ∈ DM ,

jM =
k∑

l=1

|Bl | − k ≥ 1

2

k∑

l=1

|Bl | ≥ |DM |; (6.1)

note that |DM | is the total number of sites which belong to some Bi . Equality
holds in (6.1) if and only if

|Bl | = 2 for each factor tBl of M , and mi (M) = 2 for each i ∈ DM . (6.2)

The terms satisfying condition (6.2) give the leading order contribution to S(µ̄L ) −
S(ν̄L ), as we now discuss.

Let M1 ⊂ M be the monomials for which jM = |DM |, that is, those which
satisfy (6.2), and let M2 = M \ M1. Then we write (5.16) in the form

S(µ̄L ) − S(ν̄L ) =
L∑

k=2

∑

A⊂{1,...,L}
|A|=k

(sL ,1(A) + sL ,2(A)), (6.3)

where

sL , j (A) =
∑

M∈M j

DM =A

d(M) M
∏

i∈DM

hi (M), j = 1, 2, (6.4)

so that when j = 1, each summand in (6.4) is of order L−|A|, while when j = 2,
each term is of higher order.

We first consider the sum of the sL ,1(A). For M ∈ M1, (5.15) and (6.2)
imply that hi (M) = 1/[ti (1 − ti )]. Moreover, (6.2) and the requirement that G M

be connected imply that G M is a cycle or, if |DM | = 2, a single edge connecting
two vertices, and for these graphs we know the value of d(M), as discussed at the
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end of Sec. 5. This leads to

sL ,1(A) = (−1)|A|+1

2

∑

σ

∏

i∈A

t{i,σ (i)}
ti (1 − ti )

, (6.5)

where the sum is over all cyclic permutations σ of A. Here the overall factor
of 1/2 arises for |A| = 2 from d(M) = −1/2 and for |A| ≥ 3 from the fact that
the permutations from a cycle and from the reverse cycle give rise to the same
monomial. Thus

∑

|A|=k

sL ,1(A) = (−1)k+1

2k

∑

1≤i1 =i2 =···=ik≤L

(UL )i1i2 (UL )i2i3 · · · (UL )ik−1ik (UL )ik i1

= (−1)k+1

2k

[
Tr H k

L + O(L−1)
]
, (6.6)

where HL was defined in (4.4) and the O(L−1) error arises from the fact that the
sum omits terms in which some of the indices i j coincide.

It follows from (6.6), (4.12) and (4.15) that for k ≥ 2,

lim
L→∞

∑

|A|=k

sL ,1(A) = (−1)k+1

2k
Tr H k . (6.7)

It is also true that

lim
L→∞

∞∑

k=2

∑

|A|=k

sL ,1(A) =
∞∑

k=2

(−1)k+1

2k
Tr H k = R (6.8)

(see (4.17)); this will follow from (6.7) and the Lebesgue dominated convergence
theorem if we show that |∑|A|=k sL ,1(A)| ≤ ek for some convergent series

∑
k ek .

Now since Ui j ≤ 0 for all i, j and hence the O(L−1) term in (6.6) has the opposite
sign to Tr H k

L , and since for any ε > 0, |hL (x, y)| ≤ |h(x, y)| + ε = |h(x, y) − ε|
for sufficiently large L , we have from (4.11) that for such L ,

∣∣∣
∑

|A|=k

sL ,1(A)
∣∣∣ ≤ 1

2k

∣∣∣Tr H k
L

∣∣∣ ≤ 1

2k

∣∣∣Tr(H − εC)k
∣∣∣, (6.9)

where C is the integral operator with kernel c(x, y) ≡ 1. If we take ε sufficiently
small that ‖H − εC‖ < 1 then (6.9) furnishes the needed bound.

We now consider the contribution to (6.4) of the terms sL ,2(A), each of which
is O(L− j ) with j > |A|. Since there are order Lk sets A with |A| = k, we have
formally that

lim
L→∞

∑

|A|=k

sL ,2(A) = 0. (6.10)
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We will assume that (6.10) holds and can in fact be extended to

lim
L→∞

L∑

k=2

∑

|A|=k

sL ,2(A) = 0. (6.11)

From (6.3), (6.8), and (6.11) we have

lim
L→∞

[S(µ̄L ) − S(ν̄L )] = R, (6.12)

which verifies (2.15).

7. CONCLUSION

In this paper we have seen how the truncated pair correlation function which
describes the Gaussian fluctuations of the density profile in the non-equilibrium
steady state of the simple exclusion process also determines the leading correction,
which is of order 1, to the entropy S(µ). One could also ask how the higher order
truncated correlation functions, which are related to higher order terms in the
expansion of the LDF around ρ̄, contribute to further corrections to the entropy.
Going beyond the simple exclusion process (and the WASEP and KMP model), in
which local equilibrium corresponds to a product measure, it would be interesting
to consider more general non-equilibrium steady states in which, in addition to the
weak long range part of the correlation of the form (1.1), there is an O(1) short
range part. The simplest extension of our result would be that the leading order
term would again be given by that of the local equilibrium and that the leading
correction would again be that coming from the non local part of the truncated pair
correlation. Another interesting extension would be to cases in which the leading
order of the entropy is still obtained from a local equilibrium product measure
but the long range part of the correlation obeys another scaling or in which the
fluctuations of the density are not Gaussian (as in the asymmetric simple exclusion
process; see Ref. 28).

For isolated systems at equilibrium, that is, in the microcanonical ensemble,
all microscopic configurations have equal probability, and so S(µ) = − log µ =
log |�|, where |�| is the number of configurations, or the phase space volume,
available to the system. When one moves to the canonical ensemble, still at
equilibrium, the probabilities of configurations visited by the system fluctuate:
the Gibbs-Shannon entropy S(µ) is just the expectation of the logarithm of these
probabilities. The variance of this logarithm is, up to a trivial temperature factor,
the variance of the energy; it is an extensive quantity whose value per unit volume
(or lattice site) V (µ) is related to the specific heat. One expects further that, in
equilibrium systems, the quantity [− log µ − S(µ)]/

√
LV (µ) will in the L →

∞ limit approach a standard normal random variable; this is an exercise for
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one-dimensional systems in Ref. 29. It is easily verified that the same holds for
the local equilibrium measure ν̄L considered here.

A natural question now is: in what respect is the distribution of this logarithm
in nonequilibrium steady states, such as the NESS of the SSEP, different from
or similar to the distribution in equilibrium systems? For example, are there
characteristics of this distribution which can be related to physically measurable
macroscopic quantities?

Although we do not know yet whether such questions have general answers,
we have measured for small system sizes the quantity V (µ̄L ):

V (µ̄L ) = 1

L

〈
[− log µ̄L (τL ) − S(µ̄L )]2

〉

µ̄L

. (7.1)

Our results are plotted in Fig. 4 for ρa = 1 and ρb = 0; V (µ̄L ) appears to approach
a fixed value in the large L limit. For comparison we have also plotted there the
corresponding quantity V ∗(µ̄L ) defined by

V ∗(µ̄L ) = 1

L

〈
[− log ν̄L (τL ) − S(ν̄L )]2

〉

µ̄L

. (7.2)
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Fig. 4. Variances V (µ̄L ) (solid line) and V ∗(µ̄L ) (dashed line), evaluated for small systems for the
SSEP with ρa = 1 and ρb = 0, plotted against 1/L . Equation (7.3) predicts a large L convergence to
0.179956.
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In fact, by repeating the arguments of Secs. 5 and 6 one can show that the limiting
values of these two quantities coincide and are given by

lim
L→∞

V (µ̄L ) =
∫ 1

0
dx F1(x)(1 − F1(x))

(
log

F1(x)

1 − F1(x)

)2

+ 2
∫ 1

0
dx

∫ 1

x
dy F2(x, y)

(
log

F1(x)

1 − F1(x)

) (
log

F1(y)

1 − F1(y)

)
. (7.3)

The first term in (7.3) is the corresponding quantity for the local equilibrium
system:

lim
L→∞

V (ν̄L ) = lim
L→∞

1

L

〈
[− log ν̄L (τL ) − S(ν̄L )]2

〉

ν̄L

=
∫ 1

0
dx F1(x)(1 − F1(x))

(
log

F1(x)

1 − F1(x)

)2

. (7.4)

The difference between (7.3) and (7.4) shows that in contrast to the entropy itself,
for which local equilibrium gives correctly the leading order in L , (17) the two
point correlations affect the leading order of the variance LV (µ̄L ). For ρa = 1 and
ρb = 0 the expression (7.3) takes the value π2/9 − 11/12 ≈ 0.179956, and the
expression (7.4) the value (π2 − 6)/18 ≈ 0.214978.

APPENDIX A: CORRELATION FUNCTIONS IN THE SSEP

Correlation functions in the SSEP may be obtained via the matrix method. (4)

One introduces matrices D and E and vectors |V 〉 and 〈W | which satisfy

DE − E D = D + E, (A.1)

(βD − δE)|V 〉 = |V 〉, (A.2)

〈W |(αE − γ D) = 〈W |, (A.3)

where α, β, γ , and δ were defined in Sec. 2. Then

µ̄L (τ1, . . . , τL ) = 〈W |(τ1 D + (1 − τ1)E) · · · (τL D + (1 − τL )E)|V 〉
〈W |(D + E)L |V 〉 , (A.4)

and so (in this section we write 〈·〉µ̄L ≡ 〈·〉L )

〈τi1 · · · τik 〉L = 〈W |(D + E)i1−1 D(D + E)i2−i1−1 D · · · D(D + E)L−ik |V 〉
〈W |(D + E)L |V 〉 .

(A.5)
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The normalization factor in (A.5) has been evaluated in Ref. 10:

〈W |(D + E)L |V 〉 = �(a + b + L)

�(a + b)(ρa − ρb)L
〈W |V 〉. (A.6)

Now one obtains a recursion relation for the correlation functions: starting from
the formula (A.5) for 〈τi1 · · · τik τik+1〉L , one first commutes the rightmost factor of
D to the extreme right in the product, using [D, D + E] = D + E , then writes
D|V 〉 = (β + δ)−1

(|V 〉 + δ(D + E)|V 〉) (which is equivalent to (A.2)); the result
is

〈τi1 · · · τik τik+1〉L = (ρa − ρb)(L + b − ik+1)

L + a + b − 1
〈τi1 · · · τik 〉L−1

+ ρb〈τi1 · · · τik 〉L . (A.7)

Taking k = 0, 1, and 2 one recovers (2.3), (2.4), and (2.5); (A.7) may now be
written in the form

〈τi1 · · · τik τik+1〉L = (〈τik+1〉L − ρb)
(
�〈τi1 · · · τik 〉

)
L

+ 〈τik+1〉L〈τi1 · · · τik 〉L ,

(A.8)
where for any sequence c1, c2, c3, . . . we write

(�c)L = cL−1 − cL , L ≥ 2. (A.9)

The truncated correlation functions tA,L ≡ 〈τi1 · · · τik 〉T
L , where A =

{i1, . . . , ik} with k ≥ 1, are defined recursively by

〈τi1 · · · τik 〉L =
∑

π∈P(A)

∏

B∈π

tB,L , (A.10)

(see (5.2)). We claim that for k ≥ 1 these functions satisfy the recursion

tA∪{ik+1},L = (〈τik+1〉L − ρb)
∑

π∈P(A)

∏

B∈π

(�tB)L , (A.11)

which, together with t{i},L = 〈τi 〉L , determines all the tA,L . We will verify (A.11)
below, after we have shown that it implies (1.1).

It follows from (A.11) that for A = {i1, . . . , ik}, tA,L = vk
L (i), where i =

(i1, . . . , ik) and vk
L (i) is a rational function of L and i1, . . . , ik which is a polynomial

of degree 1 in each of the i j . For x = (x1, . . . , xk) ∈ R
k let us define uk

L (x) =
vk

L (Lx); u is again rational and a polynomial of degree 1 in each x j , so that we
will obtain (1.1) if we show that uk

L = O(L−k+1). We show this by induction on
k; for k = 1 it is an immediate consequence of (2.3). But if uk

L = O(L−k+1) for
k < k0 then from

(�vk)L (Lx) = (�uk)L (x) + [
uk

L−1([1 + (L − 1)−1]x) − uk
L−1(x)

]
(A.12)

it follows that (�vk)L (Lx) = O(L−k) if k < k0, and uk
L = O(L−k+1) for k = k0

follows by evaluating (A.11) at i = Lx .
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Remark A.1: The recursion (A.11) implies a similar recursion for the Fk . Recall
that the operator

∑k
i=1 xi∂/∂xi acts on a monomial of degree d in x1, . . . , xk as

multiplication by d, so that the operator Dk = k − 1 + ∑k
i=1 xi∂/∂xi multiplies

such a monomial by k + d − 1. Then

Fk+1(x1, . . . , xk, xk+1) = (F1(xk+1) − ρb)
∑

π∈P({1,...,k})

∏

B∈π

[D|B|F|B|]((xi )i∈B).

(A.13)

This follows by writing tA,L = ∑
d L−(k+d−1) Pd + h.o.t., where Pd is homoge-

neous of degree d in i1, . . . , ik and h.o.t. denotes terms which are O(L−k) after
the substitutions i j = Lx j , j = 1, . . . , L . We will not use this formula and so
omit further details, but we do note that an easy consequence is that, for k ≥ 2, Fk

depends on α, β, γ , and δ only through an overall factor of (ρa − ρb)k .

Proof of the recursion (A.11): To verify (A.11) we need a formula for the
action of � on a product (see (A.9)). Suppose that c(1), . . . , c(k) are sequences
(i.e., c(i) = (c(i)

L )∞L=1) and that we multiply such sequences componentwise, so that

(c(1) · · · c(k))L = c(1)
L · · · c(k)

L . Then trivially

(1 + �)
(
c(1) · · · c(k)

) = [
(1 + �)c(1)

] · · · [(1 + �)c(k)
]
, (A.14)

and so with X = {1, 2, . . . , k},

�(c(1) · · · c(k)) =
∑

∅=Y⊂X

∏

i∈Y

�c(i)
∏

j∈X\Y

c( j). (A.15)

For example,

�
(
c(1)c(2)

) = �c(1)c(2) + c(1)�c(2) + �c(1)�c(2), (A.16)

�
(
c(1)c(2)c(3)

) = �c(1)c(2)c(3) + c(1)�c(2)c(3) + c(1)c(2)�c(3)

+�c(1)�c(2)c(3) + �c(1)c(2)�c(3) + c(1)�c(2)�c(3)

+�c(1)�c(2)�c(3). (A.17)

We now verify (A.11); the case k = 1 is precisely (A.8) for k = 1, and we
proceed by induction on k. We use (A.10) to write 〈τi1 · · · τik τik+1〉L , the left hand
side of (A.8), in terms of truncated correlations, separating the terms in which
ik+1 is grouped with some element of a partition of A from those in which {ik+1}
is an element of the partition of A ∪ {ik+1}:

∑

π∈P(A)

∑

B∈π

tB∪{ik+1},L
∏

C∈π

C =B

tC,L + t{ik+1},L
∑

π∈P(A)

∏

B∈π

tB,L . (A.18)
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On the other hand, with (A.10) the right hand side of (A.8) becomes

(〈τik+1〉L − ρb)
∑

π∈P(A)

(
�

∏

B∈π

tB

)

L
+ 〈τik+1〉L

∑

π∈P(A)

∏

B∈π

tB,L . (A.19)

Since (A.18) and (A.19) are the two sides of (A.8) we may equate these expressions
to obtain

∑

π∈P(A)

∑

B∈π

tB∪{ik+1},L
∏

C∈π

C =B

tC,L = (〈τik+1〉L − ρb)
∑

π∈P(A)

(
�

∏

B∈π

tB

)

L
. (A.20)

On the right hand side of (A.20) we use (A.15) to write
∑

π∈P(A)

(
�

∏

B∈π

tB

)

L
=

∑

π∈P(A)

∑

∅=σ⊂π

∏

C∈σ

(�tC )L

∏

C∈π\σ
tC,L . (A.21)

On the left side of (A.20) the term with π = {A} is just tA∪{ik+1},L ; we take the
remaining terms to the other side of the equation and in these terms use the
induction assumption to write

tB∪{ik+1},L = (〈τik+1〉L − ρb)
∑

σ∈P(B)

∏

C∈σ

(�tC )L . (A.22)

After these manipulations, (A.20) becomes

tA∪{ik+1},L = (〈τik+1〉L − ρb)
[ ∑

π∈P(A)

∑

∅=σ⊂π

∏

C∈σ

(�tC )L

∏

C∈π\σ
tC,L

−
∑

π∈P(A)
π ={A}

∑

B∈π

∑

σ∈P(B)

∏

C∈σ

(�tC )L

∏

C∈π

C =B

tC,L

]
. (A.23)

We now reorganize this expression. In the first sum we separate the term π =
{A}, which is simply (�tA)L (since necessarily σ = {A} also); in the remaining
terms of this sum we relabel π as π ′, with π ′ = {A}. Now every term in the second
sum is labeled by a partition π , a distinguished set B ∈ π , and a further partition
σ of B; this data clearly gives rise to a new partition π ′ of A, π ′ = (π ∪ σ ) \ {B},
and a distinguished subset σ of π ′; note that σ = ∅ since σ is a partition of B and
σ = π ′ since π = {A} and hence |π | ≥ 2. Thus

tA∪{ik+1},L = (〈τik+1〉L − ρb)
[
(�tA)L

+
∑

π ′∈P(A)
π ′ ={A}

( ∑

∅=σ⊂π ′

∏

C∈σ

(�tC )L

∏

C∈π ′\σ
tC,L

−
∑

∅=σ ⊆π ′

∏

C∈σ

(�tC )L

∏

C∈π ′\σ
tC,L

)]
. (A.24)
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In the sum over π ′ only the terms with σ = π ′ survive, leading to (A.11):

tA∪{ik+1},L = (〈τik+1〉L − ρb)
∑

π ′∈P(A)

∏

B∈π ′
(�tB)L . (A.25)

APPENDIX B: THE COEFFICIENTS d (M)

In this appendix we derive the two properties of the combinatorial factors
d(M) (see (5.17)) which are needed in Sec. 6: that d(M) = 0 if G M is not con-
nected, and that d(M) = (−1)k+1 if G M is a cycle on k vertices. Our approach is
to relate d(M) to the number of colorings of the graph G M . The condition that
only monomials M for which mi (M) ≥ 2 for all i ∈ DM occur in (5.16) implies
that every component of G M contains at least two vertices, and we assume that all
graphs considered in what follows satisfy this condition.

For any graph G we let c̄n(G) be the number of n-colorings of G, where an
n-coloring of G is an assignment of colors to the vertices of G, using exactly n
colors, in such a way that adjacent vertices are given distinct colors. For example,
if G is a cycle on four vertices then c̄4(G) = 24, c̄3(G) = 12, and c̄2(G) = 2. Note
that the condition that every component of G have at least two vertices implies
that c̄1(G) = 0. We also define

d̄(G) =
∞∑

n=2

(−1)n+1

n(n − 1)
c̄n(G). (B.1)

Suppose now that M is a monomial occurring in (5.16), say M = ∏
B tkB

B
with the tB distinct; the graph G M has

∑
B kB vertices, and we will denote the kB

vertices corresponding to B by vB,1, . . . , vB,kB . Recall that cn(M) is the number
of n-tuples π = (π1, . . . , πn), with πi ∈ P̃(DM ), such that M = ∏n

j=1

∏
C∈π j

tC .
An n-coloring of G M immediately yields such a π , by taking πi to be the set of all
B such that some vB, j is assigned color i . Each π arises in this way from

∏
B kB!

distinct colorings, since for each B we may permute the colors assigned to the
vB, j without changing π . Thus c̄n(G M ) = cn(M)

∏
B kB!, and

d̄(G M ) = d(M)
∏

B

kB! . (B.2)

We next derive a recursion relation for d̄(G). We first select some vertex
v of G, and let Nv be the set of vertices of G which are adjacent to v. Every
n-coloring of G induces a partition λ of Nv , where two vertices are in the same
set of the partition iff they have the same color; note that vertices in Nv which are
adjacent cannot lie in the same element of λ. Conversely, given any partition λ of
Nv satisfying this latter restriction we define the graph Gλ by (i) removing from G
the vertex v and all edges adjacent to it, (ii) collapsing all vertices belonging to a
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single subset B ∈ λ into a single vertex wB in Gλ (which may give a multi-graph;
if so, we replace any multiple edges by a single edge), and (iii) joining each pair
wB, wB ′ of new vertices produced in this way by an edge. Then every n-coloring
of G is obtained by choosing λ and then either (a) choosing one of the n colors
to assign to v and using the remaining colors for some (n − 1)-coloring of Gλ,
or (b) choosing an n-coloring of Gλ, then choosing one of the n − |λ| colors not
used on the new vertices wB to assign to v. This leads to the recursion

c̄n(G) =
∑

λ

[nc̄n−1(Gλ) + (n − |λ|)c̄n(Gλ)]. (B.3)

Then if no Gλ is 1-colorable, so that c̄n−1(Gλ) = 0 if n = 2,

d̄(G) =
∞∑

n=2

(−1)n+1

n(n − 1)
c̄n(G)

=
∑

λ

[ ∞∑

n=2

(−1)n+1

(n − 1)(n − 2)
(n − 2)c̄n−1(Gλ)

+
∞∑

n=2

(−1)n+1

n(n − 1)
(n − |λ|)c̄n(Gλ)

]

=
∑

λ

∞∑

n=2

(−1)n+1

n(n − 1)
[n − |λ| − (n − 1)]c̄n(Gλ)

=
∑

λ

(1 − |λ|)d̄(Gλ). (B.4)

This is the desired recursion.
As a first consequence of (B.4) we show that if G is a disconnected graph

in which every component has at least two vertices, then d̄(G) = 0. We argue by
induction on the number n of vertices of G; certainly n ≥ 4. If n = 4 then G has
two components, each a single edge joining two vertices, and an application of
(B.4) shows that d̄(G) = 0 (there will be only one partition λ, with |λ| = 1, in
the sum). We now argue by induction on n; if we apply (B.4) with any vertex v

of G, every d̄(Gλ) on the right hand side will vanish by the induction assumption
unless the “new” component of Gλ has a single vertex, in which case |λ| = 1; thus
d̄(G) = 0.

As a second application we compute d̄(G) for G a cycle. First note that if
G is a graph with 2 vertices joined by an edge then d̄(G) = −1, by a simple
direct calculation. If G is a cycle with k ≥ 3 vertices and v is any vertex of G
then Nv contains two vertices, say Nv = {w1, w2}, and the sum in (B.4) has one
term λ = λ0 ≡ {{w1}, {w2}} and, if k ≥ 4 so that w1 and w2 are not adjacent, also
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one with λ = {Nv}. The latter term, even if present, does not contribute since
|λ| = 1, so d̄(G) = −d̄(Gλ0 ). But Gλ0 is a cycle with k − 1 vertices or, if k = 3,
the two-vertex graph considered above; thus d̄(G) = (−1)k+1 by induction on k.
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